

an Olego

SDR – Wildland Fire S&T Task Force June 2014

Everett A. Hinkley

National Remote Sensing Program Manager USDA Forest Service

Technology – New Capabilites New Challenges

Google Earth – First Look 2004

Technology and Wildfire

• Wildfires

- Do response teams have sufficient tactical information to effectively and safely manage the incident?
- Work with fire management teams to identify gaps.
- Technology
 - What is the role of RS technology in disasters/wildfire?
 - Current RS capabilities: what do we currently bring to the fight?
 - Can remote sensing technology be better applied to assist in decision-making, increase safety, and reduce losses?
 - Are there underutilized technologies (identify opportunities)?
 - New Sensors
 - Unmanned Aircraft Systems
 - Crowd Sourcing?

Wildland Fires - Requirements

What Information is Needed?

- Fire detection and reporting / where are the starts?
- Fuel information what is available to burn?
- Weather what are the current and predicted conditions?
 - Need good forecasting
 - And real time, high granularity weather information during event.
- Where is the active fire / what is the behavior?
 - Fire perimeter and active fire fronts
 - Where the fire has been (the black)
 - Lines of containment

- Where are the firefighters? Assets at risk? People at risk?

Update frequency? Data accuracy?

Wildland Fires - Technology (RS)

Platforms

- Satellites
- Manned aircraft
- Unmanned aircraft

Sensor s

- Thermal Sensors
- Weather Sensors

Data Telemetry Capabilities

- Aircell Internet capability
- UAS radio repeaters

Decision Support Tools – Intelligent mission management technologies which take in data, analyze and then display the appropriate data to decision makers.

Technology - Sensors and Platforms

Satellite

- MODIS
- Landsat
- NTM
- Other

Airborne

- Phoenix
- Various (vendors)
- *Unmanned Airborne Systems: Ikhana / Global Hawk / Others

Other

- Firehawk (active fire mapping)
- *Hawkeye (fire detection & alerting)

Airborne Fire Mapping (Manned)

- National Infrared Operations "NIROPS"
- Large scale tactical fire detection/mapping to support incident command operations
- Continuous operational deployment since 1967 (47 years)

NIROPS Assets

Phoenix Sensor Thermal Imagery

- 8-bit (0-255) imagery
 - 255 pixel tagged red
- 3.5-meter pixels at nadir at 10,000 ft. AGL
- The detection threshold at 10,000 ft. AGL is 8".
- Nominal swath width of 6 miles at 10,000 ft. AGL

Active-Fire Mapping Products

May 14, 2014

ULS

Active-Fire Mapping Products

Funny River Fire – Kenai Alaska

Firemapper

- Pacific Southwest Research Station
- Small, well-tested thermal imaging system
- Good for small area fires

Commercial IR Vendors & Military

- Few qualified vendors
- Not always available
- Cost significantly more than the NIROPS aircraft

ANG / NORTHCOM

New Fire Mapping Sensors

Hawkeye – Fire Detection & Alerting

- Hawkeye leverages national systems for fire detection and alerting. In trial phase over past 2 fire seasons.
- Hawkeye has demonstrated a fire alert process with manual downgrade and dissemination of tipoff information.
- Hawkeye fire alerts have demonstrated a low false alarm rate, and proven "early detection capability".
- Future capability may include automated fire detection and false alarm de-confliction based on the fusion of many divergent sources.
- All forensic case studies were very positive for Hawkeye fire alerts (i.e., good correlation between detections and actual fires in study areas).
- Hawkeye can support active fire monitoring, but additional requirements will require additional development work.

Technology – Unmanned Aircraft Systems

A menagerie of UAVs

As drones go domestic, both the models and the missions are multiplying.

GLOBAL HAWK

Used by: NASA Used for: Tracking hurricanes and studying signs of climate change.

PREDATOR

Used by: DHS, NASA Used for: Border patrol and wildfire mapping.

BAT

 Used by: USDA
Used for: Digital imagery to monitor rangeland vegetation.

DRAGON EYE

Used by: NASA Used for: Aerial mapping and in situ gas sampling.

RAVEN

Used by: DOE, USGS, NASA Used for: Monitoring land change, wildfire mapping and general research.

T-HAWK

Used by: USGS Used for: Monitoring Fukushima radiation emissions and environmental mapping.

Forest Service UAS Strategy

- Augment, <u>NOT</u> replace, our manned aircraft
- Work with partners to identify niche applications that are underserved by current technology
- Keep the approach simple; work on doing one thing well before adding additional capabilities
- Provide unified systems that are affordable

UAS Application Areas

• Wildfire

- Near real-time, high resolution fire detection and characterization
- Tactical scale imagery and geospatial mapping/visualization products
- Communications link/relay
- Resource Management
 - General remote sensing hi res imagery, LiDAR and others....
 - Forest inventory
 - Resource mapping (fuels, forest health, etc.)
 - Rangeland Monitoring (grazing permits)
- Law Enforcement & Investigations
 - Surveillance
 - Detection/mapping of illegal activities

Possible UAS Fire Applications

Two Track Approach to Evaluating UAS Large Platforms

Small Platforms

Small UAS – Looking Ahead

<u>Desired Features</u>Fully autonomous takeoff and landing

- Operable from small, unimproved locations!!
- Man or light truck portable
- Capable imaging systems and guidance systems
 VTOL Preferred

UAS Fire Products

Near real-time full motion video of active fire areas

Slant R 0.414n.m. Ground R 0.236n.m. TGT Size* 72ft TGT 36° 2' 56.31" -121° 11' 34.324" 1421ft MSL

Large UAS

Global Hawk Thermal Image

Thoughts on UAS and Wildfire

- Integrating UAS into fire operations is complicated, but not impossible
- UAS augments manned aircraft capacity
 - Expands the "tool kit"
 - Transfer of technologies
- It's also about the mission objective, the sensor and related technologies
 - Sensor characteristics
 - Data and products
 - Communications; Delivery and dissemination of data/products
- Data and intelligence derived using UAS can potentially increase the safety and effectiveness of firefighters

Active Fire Mapping Program

- The USDA Forest Service Active Fire Mapping (AFM) program provides critical, timely, and comprehensive imagery and fire geospatial data products for the wildfire management community and the public at large.
- The AFM fire locations are produced by an operational, satellite-based fire detection and monitoring program managed by the Remote Sensing Applications Center (RSAC) in Salt Lake City, Utah.

Google Earth - Common Decision Environment (CDE)

Wildfire Research and Applications Partnership (WRAP)

NASA Sun-Earth Systems Directorate, Applied Sciences Program

Collaborators

- NASA-Ames Research Center (ARC)
- USDA Forest Service
- Remote Sensing Applications Center (RSAC)
- National Interagency Fire Center (NIFC)

Tactical Fire Remote Sensing Advisory Committee (TFRSAC)

Mission: Ensure that the WRAP program is supporting the firefighter's technology needs. Identify "gaps & opportunities"; transfer capable technology and development applications to the Field.

Membership: Stakeholders from NASA, USDA Forest Service, DOI Bureau of Land Management, Universities, and including Firefighters from 3 nations, with expertise in fire detection/mapping, aviation, communications, and ground operations.

Next meeting: October 22 -23 / Reno NV

Technology and Disasters

Closing Caveats

- Over-reliance on technology may:
 - create a false sense of security
 - create vulnerabilities and
 - dull common sense in dangerous situations
- Technology can not make all of us safe all the time.

Comments/Questions?

Contact Information

• Everett A. Hinkley

National Remote Sensing Program Manager Senior Advisor to National Coordination Office for PNT USDA Forest Service 703-605-4580 / ehinkley@fs.fed.us

2007-2009 Western States Fire Mission

- NASA/USFS collaboration via Wildfire Research Applications Partnership (WRAP)
- Missions conducted using NASA Ikhana UAS
 - Standard MQ-9 Predator B/Reaper w/o skyball

• Mission Plan:

- One LE mission/week
- 4-5 missions/summer
- Mission Durations:
 - ~20+ hours
- Flight Altitude Operations:
 - FL230 (23,000 feet MSL)

Global Hawk Imagery

